H-Infinity and RST Position Controllers of Rotary Traveling Wave Ultrasonic Motor

نویسندگان

  • M. Brahim
  • I. Bahri
  • Y. Bernard
چکیده

Traveling Wave Ultrasonic Motor (TWUM) is a compact, precise, and silent actuator generating high torque at low speed without gears. Moreover, the TWUM has a high holding torque without supply, which makes this motor as an attractive solution for holding position of robotic arms. However, their nonlinear dynamics, and the presence of load-dependent dead zones often limit their use. Those issues can be overcome in closed loop with effective and precise controllers. In this paper, robust H-infinity (H∞) and discrete time RST position controllers are presented. The H∞ controller is designed in continuous time with additional weighting filters to ensure the robustness in the case of uncertain motor model and external disturbances. Robust RST controller based on the pole placement method is also designed and compared to the H∞. Simulink model of TWUM is used to validate the stability and the robustness of the two proposed controllers. Keywords—Piezoelectric motors, position control, H∞, RST, stability criteria, robustness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Prediction of Stator Diameter Effect on the Output Torque of Ultrasonic Traveling-wave Motor, using Finite Elements Simulation

Nowadays, piezoelectric materials have wide applications in various industries. Therefore, investigation of these materials and their applications has a special importance. In this paper first, the natural frequencies of a traveling-wave piezoelectric motor are achieved, using finite elements simulations. Then, applying an alternative electrical voltage to the piezoelectric ring, a traveling wa...

متن کامل

A finite volume method and experimental study of a stator of a piezoelectric traveling wave rotary ultrasonic motor.

Piezoelectric traveling wave rotary ultrasonic motors are motors that generate torque by using the friction force between a piezoelectric composite ring (or disk-shaped stator) and a metallic ring (or disk-shaped rotor) when a traveling wave is excited in the stator. The motor speed is proportional to the amplitude of the traveling wave and, in order to obtain large amplitudes, the stator is ex...

متن کامل

A High-Thrust Screw-Type Piezoelectric Ultrasonic Motor with Three-Wavelength Exciting Mode

A high-thrust screw-type piezoelectric ultrasonic motor with a three-wavelength exciting mode is proposed in this paper. The motor mainly includes a stator and a screw output shaft, and the stator is composed of twelve rectangular piezoelectric plates and a hollow metal elastomer with an internal thread. The stator can be excited to generate the combined micro ultrasonic vibration mode. With th...

متن کامل

Standing wave ultrasonic motor pdf

INTRODUCTION The first ultrasonic motor was developed by V.V. TYPES OF ULTRASONIC MOTOR ULTRASONIC MOTOR STANDING TRAVELLING WAVE TYPE. Www.slideworld.com www.pdf-searchengine.com. X2022 The first ultrasonic motor was introduce by v.v lavrinko in 1965.x2022 An. Ultrasonic motor Standing Traveling wave wavebidirectional unidirectional 8. Rakesh R.standing wave piezoelectric linear ultrasonic mot...

متن کامل

Rotary Ultrasonic Motors Actuated By Traveling Flexural Waves

Efficient miniature actuators that are compact and consume low power are needed to drive space and planetary mechanisms in future NASA missions. Ultrasonic rotary motors have the potential to meet this NASA need and they are developed as actuators for miniature telerobotic applications. These motors have emerged in commercial products but they need to be adapted for operation at the harsh space...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017